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1. INTRODUCTION

Let

xil)

x{2), xé2)

&
I

x{"), xé”),..., xf,"’

be an aggregate of points such that, for each #,

R (= §

1> x> xf»
For any continuous function f(x) with domain [—1, 1] we define the nth
Lagrange interpolation polynomial of f(x) with respect to B to be that
unique polynomial of degree at most » — 1 which assumes the values
FOEN,L Fe™) at X, XL, x™), respectively.
Here we shall consider the case where the points x{” (k =1, ..., n) are
the zeros of the Chebyshev polynomial 7,(x) = cos(n arc cos x): that is

x§cn) — COS(2k — 1) 7/2n, k=1,.,n (1'1)

These interpolation polynomials are given by

L9 = 3 fG) Tl — 5 Tl

349
Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any form teserved.



350 VARMA AND MILLS

Since, as it is easy to verify,

L)l — x) T,/GP) = (W) (1 + 2 z 7,69 Tx)
the L,(f) can be expressed as follows:
L(f; %) = z eAf) T,(), (12)
where
lf) = 1in 3. 7647) 13)
and

c(f) = 2/n f M T, r=1.,n—1. (1.4)

k=1

The properties of this sequence of polynomials are sometimes similar to
those of the partial sums of the Fourier series of an integrable 2m-periodic
function. Therefore, as in the theory of Fourier series, it is natural to consider
summability methods which would sum the sequence (L,(f)) to f for a large
class of functions.

We shall consider summability methods

n-1
A5 %) = X Aedf) Tu), (1.5)

r=0

which arise from a triangular matrix (A™) k =0, 1,..,n —1; n =1,2,....
It is easy to see that

Af, D) = 3 SO Au), (1.6)
where

A (x) = (1/n) (1 12 "f AT (x) T(x{® )

r=1

Here we prove the following theorem.

THEOREM. Let the matrix of coefficients (A™) satisfy
AW=1 X =0 i j=mn X =o00m (1.7)
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and either

IAD ™ LA = oy, = 1l.,n—1 (1.8)
or
1= 2" =o1/m), A —2P4+ 2" =0 j=1,..,n1—1 (L9
Then

[ Aa(f) = fll < efn 3 w(1fr), (1.10)

r=1

for fe C[—1, 1] having modulus of continuity «(8). The constant ¢, (and
elsewhere ¢, , ¢, ,...) is positive and independent of n and f.
Now we give some choices of A;’s which satisfy the above requirement,

(n) __ (n—J)m — —
@ N =Gy =0 b
=0 Jj=nm

@)M“:E%#i =0, 1,..n

=0 j=n

2. PRELIMINARIES
If f(x) =1 then

eo(f) =1

and, forr=1,2,.,n—1,

ef) = 2n 3 Ty

= 2/n i cos{(((Rk — 1) r/2n) m)

k=1

=0,
So by (1.5) and (1.7)
An(l’ x) = 1’
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and, therefore,

| Ay %) — f)] < i\f(x‘"’ — O | A

w1 X3P — x 1) | Aea(X).

M=

<

=
1
-

Let x = cos 0, x{™ = cos 8, k = 1,..., n. We have then

3

| A(fy %) — fOI] < Y (| 8 — 81) | Py(6)], (2.1)

where

Py () = Ay n(cos 6)
n-1 2.2)
= (1/n) + (2/n) ¥ A" cos rf cos ro.

r=1

To prove the theorem we need some preliminary notation and estimates.
We denote the Fejér kernel by

2]1
t(0)~1—|— Z(J——z)coszﬁ

_ 1 (sin j§/2\® .
= j (—gl—n—e/-—z-) for J= 2, 3,..., n

and #,(0) = 1.
Associated with this kernel we introduce

7.1(0) = 6,0 + 07) + 1,0 — 61
It is easy to verify that
U+ 1D 78 — 275000) + (G — 1) 7,1.4(6) = 2 cos jb cos jo”.
Using this relation we obtain

n—1
Pin(0) = 1n Y ™ — 227 1 X% rr, (0) + AP 7, (0).  (2.3)

r=1

If there is no confusion we shall write 4, , Py, A, , 0., for Ay, , Py, A,
o™,
Naturally enough, we shall require the following lemma.
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LEMMA 1. Under the hypotheses (1.7), (1.8) or (1.7), (1.9) we have
2 4 =Y | P) = O).
k=1 k=1

Proof. Let (1.7) and (1.8) hold. That is,

Ay =1, A=0 if j=an Ay = O(1/n)
and

| Ay — 24 + Ay | = O(1/n?) j=1,..,n—1
Then by these hypotheses and (2.3) we have

n—1 n

Y e = 2+ A [ma®) + X 1 sy | 76
J=1

= k=1

S IPOI< Y Un (
k=1 k=1

n—1

= 1l/n Y. O(1/n®, jn+ O(1/n)n
i1

= O(1).
Alternatively, let (1.7) and (1.9) hold. That is

Ay = 1, A=0 if j=n, A = O(1/n)
and

I — A = 0(1/n), Aipp =20 + A =0, j=L.,n—1L

Then we have

S PO < T e = 2+ X 001Jn) = OO,

LEMMA 2. Let 6 £ 0, . Thenfor 1 <k <nandl <r<n

Tral0) < 7¥r(6 — 6,)
Proof. By definition,

1 u(0) = 1 ( sin®(r(6 4 6,))/2 sin®(r(6 — 6,))/2 )

7 @ F 5,2 S%0 = 0,2 2.4)
Also
sin 0 —; O _ singcos%—l— cosgsin—gﬁ,
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and, hence,

}1sings.in£}1°~—cosgsinﬁ ——sin‘ 5

2 2 2 2

2.5)

Then the lemma follows from (2.4), (2.5), and Jordan’s inequality, namely,

|sinx| =2/ | x| if 0< x| <w/2

LemMa 3. Let 8 €0, 7], and let 8; = ((2j — 1)=)[2n be the node nearest
10 8. Then

Z_: (w(l 6 — 0 D)0 — 0 <o Z w(l/r)
and

Z (oo(] B — O 1)/(Ox — 0)* < can Z w(l/r).

k=j+1 r=1
(If j = 1 or n then only one of these inequalities holds.)

Proof. This lemma is contained implicitly in a paper given by Bojanic [1].

3. PROOF OF THE THEOREM

We can now prove the theorem. Let j be as in Lemma 3. By (2.1),

i-1

| Ap(fs ) — f) < 3 (16 — 01) | Po(O)] + (1 6; — 61) | PAO)

k=1

+ T w6, — 6)] PO).

k=j+1

As remarked before, the first or last sum may not appear in some cases.
By our choice of §; and Lemma 1,

< csw(l/n) | PAO)
< cqw(l/n)

n

< Cyin Y. w(lfr). 2.9)

r=1

w(l 0; — 81) | PAO)
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Suppose (1.7) and (1.8) hold. Then by these hypotheses and Lemmas 2
and 3,

i-1

Y (] 6, — 0]) | P(B)]

k=1
-1
\ Z w(] 91: ~ 0 D (l/n Z ] Ar<l~1 2A1‘ + /\r—] I rTr,k(a) + J /\n—l ] Tn.k(o))
k=1

n—-1 j-1

< cg/n® Z Z (] 6, — 81) 7, (6) + Z [ Apy | w(] 6, — 8 )Tnk(a)

<l 33 10— 0D/6 — 6) + cn 3 ll b — 81 ra®
<afn S wllfr). (2.10)

r=1

A similar estimate is valid for ¥,_;., w(l 8, — 6 ]) | P,(8)| and so by (2.9)
and (2.10) the proof is complete.

It remains to consider the case when (1.7) and (1.9) hold Since the
inequality (2.9) is still valid, it suffices to estimate the sum Zk _; under these
conditions.

Now

A="F ali0— 6,]) ] PO

k=1

\iwﬁhMWZWJMAMWM@HMﬂm@
k=1

n—1 i-1
= 1/n Z ()‘r+1 — 27, + )‘r—l) r Z w(l 0 — 6 ) Trk
r=1 k=1

j-1
1 Anea | Y (i 0 — 81) 7, (6.
E=1
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In using Lemmas 2 and 3 and the hypotheses (1.7) and (1.9).

AU S Gy = 20+ M) X (16— 6,10 — 60)

=i

-1
+ ey Y, (] 6 ~ 8; /(6 — 8,

n n

<en (¥ 0M) 1 =X = Ap) <ewln Y wlljn).

r=1 r=1

Again a similar estimate is valid for ¥;_;,, and the proof of the theorem
is complete.
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